

Verifiably Following Complex Robot Instructions with Foundation Models

Benedict Quartey* benedict_quartey@brown.edu benedictquartey.com

With Eric Rosen*, Stefanie Tellex and George Konidaris

Feb 23 2024

https://robotlimp.github.io

Go to the kitchen while avoiding the orange table and bring me the book between the microwave and sink.

Motivation

Go to the kitchen while avoiding the orange table and bring me the book between the microwave and sink.

Motivation

Navigation and manipulation Ground arbitrary referents Referent disambiguation **Behavior Verification**

Language Instruction grounding for Motion Planning <u>(LIMP)</u>

- * Construct 3D representation of an environment via SLAM.
- specifications with a novel composable syntax that enables referent disambiguation.
- * Instruction referents are detected and grounded via VLMs and spatial reasoning

* Leverage LLMs to translate complex natural language instructions into linear temporal logic

* Dynamically generate semantic maps to localize regions of interest and progressively synthesize constraint-satisfying motion plans to achieve the subgoals required to satisfy the instruction

Problem Definition

<u>Objective</u>

Given a natural language instruction, our goal is to synthesize navigation and manipulation skills to produce a policy that faithfully satisfies the constraints of the instruction.

<u>Assumptions</u>

Unlike previous works we do not assume access to a prebuilt semantic map with locations of objects or predicates prespecified. However we assume:

<u>Navigation</u>

Object goal oriented path planning problems in continuous space. Generate paths to goal set while staying in feasible regions and avoiding infeasible regions.

* Access to a robot equipped an RGBD camera * Access to a task agnostic visual language model * Access to an auto-regressive large language model

<u>Manipulation</u>

Object parameterized options. Initiation set, policy and termination condition are functions of robot pose and an object parameter θ

$$o_{\theta} = (I_{\theta}, \pi_{\theta}, \beta_{\theta})$$

Linear Temporal Logic (LTL)

LTL presents an expressive grammar for specifying temporal behavior. Formulas are composed of atomic propositions, logical connectives and temporal operators.

Logical Connectives

- Conjunction \wedge
- Negation \neg
- Disjunction V
- Implication \rightarrow

"Go to the kitchen then the fridge" $\mathcal{F}(ext{Kitchen} \wedge \mathcal{F}(ext{Fridge}))$

Pnueli, Amir. "The temporal logic of programs." 18th Annual Symposium on Foundations of Computer Science (sfcs 1977). ieee, 1977.

Temporal Operators

Next	\mathcal{X}
Until	U
Globally/Always	${\cal G}$
Finally/Eventually	\mathcal{F}

Linear Temporal Logic (LTL)

'Go to the kitch $\mathcal{F}(ext{Kitchen})$

Pnueli, Amir. "The temporal logic of programs." *18th Annual Symposium on Foundations of Computer Science* (*sfcs 1977*). ieee, 1977.

- "Go to the kitchen then the fridge"
 - $\mathcal{F}(ext{Kitchen} \wedge \mathcal{F}(ext{Fridge}))$

Scene Representation

Approach

Robot Observations [RGB-D + Camera Poses]

Approach

Large Language Model

Input Instruction :

Our LTL Syntax : $\mathcal{F}(A \wedge \mathcal{F}(B \wedge \mathcal{F}(C \wedge \neg D \wedge \mathcal{F}E)))$ φ_l

- A: near[green_plush_toy]
- B: pick[green_plush_toy]
- C: near[whiteboard::isinfrontof(green_plush_toy)]
- D: near[robot::isinfrontof(green_plush_toy)]

"Bring the green plush toy to the whiteboard in front of it, watch out for the robot in front of the toy"

E: release[green_plush_toy, whiteboard::infrontof(green_plush_toy)]

Spatial Grounding Module

Visual Language Model

Referents: green_plush_toy; whiteboard::isinfrontof(green_plush_toy); robot::isinfrontof(green_plush_toy)

VLM Detections

Spatial Grounding Module

Visual Language Model

VLM Detections

Referents: green_plush_toy; whiteboard::isinfrontof(green_plush_toy); robot::isinfrontof(green_plush_toy)

Backprojected Detections

Referent Semantic Map

Before Spatial Reasoning and Filtering Spatial Reasoning w.r.t Origin Reference Frame

After Spatial Reasoning and Filtering

Task & Motion Planning Module

Progressive Motion Planner

Task & Motion Planning Module

Progressive Motion Planner

Navigation Objective 2; Achieves Transition: C & !D & !E

(b)

Demonstration

"Bring the toy cat between the coffee machine and the water filter to the black bag in front of the red sofa. I don't want you to go near the blue sofa or the fridge next to the water filter when going for the cat."

1672

See Demo at https://robotlimp.github.io/

Free form instruction

"Bring the toy cat between the coffee machine and the water filter to the black bag in front of the red sofa. I dont want you to go near the blue sofa or the fridge next to the water filter when going for the cat"

Translated LTL Formula

 $\mathcal{F}(A \wedge \neg E \wedge \neg H \wedge \mathcal{F}(B \wedge \mathcal{F}(C \wedge \mathcal{F}D)))$

Resolved Referents

- C: near[black_bag::isinfrontof(red_sofa)]
- E: near[blue_sofa]
- H: near[fridge::isnextto(water_filter)]

```
A: near[toy_cat::isbetween(coffee_machine,water_filter)]
B: pick[toy_cat::isbetween(coffee_machine,water_filter)]
D: release[toy_cat,black_bag::isinfrontof(red_sofa)]
```

Task Automaton

Resolved Referents

- A: near[toy_cat::isbetween(coffee_machine,water_filter)]
- B: pick[toy_cat::isbetween(coffee_machine,water_filter)]
- C: near[black_bag::isinfrontof(red_sofa)]
- D: release[toy_cat,black_bag::isinfrontof(red_sofa)]
- E: near[blue_sofa]
- H: near[fridge::isnextto(water_filter)]

Chosen Automaton Path Key

Red:	Navigation Skill Objectiv
Orange:	Pick Skill Objective
Green:	Release Skill Objective

Sample VLM Detections

Grounded Detections after Spatial Reasoning

<u>Key</u>

Red: red sofa || Blue: blue sofa Black: black bag in front of red sofa Cyan: fridge next to water filter

Orange: coffee machine || Brown: water filter Violet: toy cat between coffee machine and water filter

Referent Semantic Map

Task Progression Semantic Map

(First Navigation Objective)

Task relevant regions of interest **Red**: avoidance region Green: allowable region Gold: goal region

Computed Motion Plan (First Navigation Objective)

Achieves Transition (A&!B&!E&!H)

Task Progression Semantic Map (Second Navigation Objective)

Task relevant regions of interest

Red: avoidance region Green: allowable region Gold: goal region

Computed Motion Plan (Second Navigation Objective)

Achieves Transition (C&!D)

Concluding Remarks

Question

How do we get robots to verifiably follow complex open-ended instructions?

Proposal

constraint satisfying task and motion planning.

Desirable properties

- * General purpose instruction following
- * Explainable instruction representation
- * Verifiably correct behavior synthesis

* Combine the generality of foundation models with the verifiability and explainability of temporal logics to generate instruction conditioned semantic maps that affords

Benedict Quartey* benedict_quartey@brown.edu benedictquartey.com

With Eric Rosen*, Stefanie Tellex and George Konidaris

Kindly check out our Preprint and website

https://arxiv.org/abs/2402.11498 https://robotlimp.github.io

Feb 23 2024

The End!

