Source code for problems.multi_object_search.agent.agent

# Defines the agent. There's nothing special
# about the MOS agent in fact, except that
# it uses models defined in ..models, and
# makes use of the belief initialization
# functions in belief.py
import pomdp_py
from .belief import *
from ..models.transition_model import *
from ..models.observation_model import *
from ..models.reward_model import *
from ..models.policy_model import *


[docs] class MosAgent(pomdp_py.Agent): """One agent is one robot.""" def __init__( self, robot_id, init_robot_state, # initial robot state (assuming robot state is observable perfectly) object_ids, # target object ids dim, # tuple (w,l) of the width (w) and length (l) of the gridworld search space. sensor, # Sensor equipped on the robot sigma=0.01, # parameter for observation model epsilon=1, # parameter for observation model belief_rep="histogram", # belief representation, either "histogram" or "particles". prior={}, # prior belief, as defined in belief.py:initialize_belief num_particles=100, # used if the belief representation is particles grid_map=None, ): # GridMap used to avoid collision with obstacles (None if not provided) self.robot_id = robot_id self._object_ids = object_ids self.sensor = sensor # since the robot observes its own pose perfectly, it will have 100% prior # on this pose. prior[robot_id] = {init_robot_state.pose: 1.0} rth = init_robot_state.pose[2] # initialize belief init_belief = initialize_belief( dim, self.robot_id, self._object_ids, prior=prior, representation=belief_rep, robot_orientations={self.robot_id: rth}, num_particles=num_particles, ) transition_model = MosTransitionModel( dim, {self.robot_id: self.sensor}, self._object_ids ) observation_model = MosObservationModel( dim, self.sensor, self._object_ids, sigma=sigma, epsilon=epsilon ) reward_model = GoalRewardModel(self._object_ids, robot_id=self.robot_id) policy_model = PolicyModel(self.robot_id, grid_map=grid_map) super().__init__( init_belief, policy_model, transition_model=transition_model, observation_model=observation_model, reward_model=reward_model, )
[docs] def clear_history(self): """Custum function; clear history""" self._history = None