Source code for problems.multi_object_search.env.visual

# Visualization of a MOS instance using pygame
#
# Note to run this file, you need to run the following
# in the parent directory of multi_object_search:
#
#   python -m multi_object_search.env.visual
#

import pygame
import cv2
import math
import numpy as np
import random
import pomdp_py.utils as util
from pomdp_py.problems.multi_object_search.env.env import *
from pomdp_py.problems.multi_object_search.domain.observation import *
from pomdp_py.problems.multi_object_search.domain.action import *
from pomdp_py.problems.multi_object_search.domain.state import *
from pomdp_py.problems.multi_object_search.example_worlds import *


# Deterministic way to get object color
[docs] def object_color(objid, count): color = [107, 107, 107] if count % 3 == 0: color[0] += 100 + (3 * (objid * 5 % 11)) color[0] = max(12, min(222, color[0])) elif count % 3 == 1: color[1] += 100 + (3 * (objid * 5 % 11)) color[1] = max(12, min(222, color[1])) else: color[2] += 100 + (3 * (objid * 5 % 11)) color[2] = max(12, min(222, color[2])) return tuple(color)
#### Visualization through pygame ####
[docs] class MosViz: def __init__(self, env, res=30, fps=30, controllable=False): self._env = env self._res = res self._img = self._make_gridworld_image(res) self._last_observation = {} # map from robot id to MosOOObservation self._last_viz_observation = {} # map from robot id to MosOOObservation self._last_action = {} # map from robot id to Action self._last_belief = {} # map from robot id to OOBelief self._controllable = controllable self._running = False self._fps = fps self._playtime = 0.0 # Generate some colors, one per target object colors = {} for i, objid in enumerate(env.target_objects): colors[objid] = object_color(objid, i) self._target_colors = colors def _make_gridworld_image(self, r): # Preparing 2d array w, l = self._env.width, self._env.length arr2d = np.full((self._env.width, self._env.length), 0) # free grids state = self._env.state for objid in state.object_states: pose = state.object_states[objid]["pose"] if state.object_states[objid].objclass == "robot": arr2d[pose[0], pose[1]] = 0 # free grid elif state.object_states[objid].objclass == "obstacle": arr2d[pose[0], pose[1]] = 1 # obstacle elif state.object_states[objid].objclass == "target": arr2d[pose[0], pose[1]] = 2 # target # Creating image img = np.full((w * r, l * r, 3), 255, dtype=np.int32) for x in range(w): for y in range(l): if arr2d[x, y] == 0: # free cv2.rectangle( img, (y * r, x * r), (y * r + r, x * r + r), (255, 255, 255), -1 ) elif arr2d[x, y] == 1: # obstacle cv2.rectangle( img, (y * r, x * r), (y * r + r, x * r + r), (40, 31, 3), -1 ) elif arr2d[x, y] == 2: # target cv2.rectangle( img, (y * r, x * r), (y * r + r, x * r + r), (255, 165, 0), -1 ) cv2.rectangle( img, (y * r, x * r), (y * r + r, x * r + r), (0, 0, 0), 1, 8 ) return img @property def img_width(self): return self._img.shape[0] @property def img_height(self): return self._img.shape[1] @property def last_observation(self): return self._last_observation
[docs] def update(self, robot_id, action, observation, viz_observation, belief): """ Update the visualization after there is new real action and observation and updated belief. Args: observation (MosOOObservation): Real observation viz_observation (MosOOObservation): An observation used to visualize the sensing region. """ self._last_action[robot_id] = action self._last_observation[robot_id] = observation self._last_viz_observation[robot_id] = viz_observation self._last_belief[robot_id] = belief
[docs] @staticmethod def draw_robot(img, x, y, th, size, color=(255, 12, 12)): radius = int(round(size / 2)) cv2.circle(img, (y + radius, x + radius), radius, color, thickness=2) endpoint = ( y + radius + int(round(radius * math.sin(th))), x + radius + int(round(radius * math.cos(th))), ) cv2.line(img, (y + radius, x + radius), endpoint, color, 2)
[docs] @staticmethod def draw_observation(img, z, rx, ry, rth, r, size, color=(12, 12, 255)): assert type(z) == MosOOObservation, "%s != MosOOObservation" % (str(type(z))) radius = int(round(r / 2)) for objid in z.objposes: if z.for_obj(objid).pose != ObjectObservation.NULL: lx, ly = z.for_obj(objid).pose cv2.circle( img, (ly * r + radius, lx * r + radius), size, color, thickness=-1 )
[docs] @staticmethod def draw_belief(img, belief, r, size, target_colors): """belief (OOBelief)""" radius = int(round(r / 2)) circle_drawn = {} # map from pose to number of times drawn for objid in belief.object_beliefs: if isinstance(belief.object_belief(objid).random(), RobotState): continue hist = belief.object_belief(objid).get_histogram() color = target_colors[objid] last_val = -1 count = 0 for state in reversed(sorted(hist, key=hist.get)): if state.objclass == "target": if last_val != -1: color = util.lighter(color, 1 - hist[state] / last_val) if np.mean(np.array(color) / np.array([255, 255, 255])) < 0.99: tx, ty = state["pose"] if (tx, ty) not in circle_drawn: circle_drawn[(tx, ty)] = 0 circle_drawn[(tx, ty)] += 1 cv2.circle( img, (ty * r + radius, tx * r + radius), size // circle_drawn[(tx, ty)], color, thickness=-1, ) last_val = hist[state] count += 1 if last_val <= 0: break
# PyGame interface functions
[docs] def on_init(self): """pygame init""" pygame.init() # calls pygame.font.init() # init main screen and background self._display_surf = pygame.display.set_mode( (self.img_width, self.img_height), pygame.HWSURFACE ) self._background = pygame.Surface(self._display_surf.get_size()).convert() self._clock = pygame.time.Clock() # Font self._myfont = pygame.font.SysFont("Comic Sans MS", 30) self._running = True
[docs] def on_event(self, event): # TODO: Keyboard control multiple robots robot_id = list(self._env.robot_ids)[0] # Just pick the first one. if event.type == pygame.QUIT: self._running = False elif event.type == pygame.KEYDOWN: u = None # control signal according to motion model action = None # control input by user # odometry model if event.key == pygame.K_LEFT: action = MoveLeft elif event.key == pygame.K_RIGHT: action = MoveRight elif event.key == pygame.K_UP: action = MoveForward elif event.key == pygame.K_DOWN: action = MoveBackward # euclidean axis model elif event.key == pygame.K_a: action = MoveWest elif event.key == pygame.K_d: action = MoveEast elif event.key == pygame.K_s: action = MoveSouth elif event.key == pygame.K_w: action = MoveNorth elif event.key == pygame.K_SPACE: action = Look elif event.key == pygame.K_RETURN: action = Find if action is None: return if self._controllable: if isinstance(action, MotionAction): reward = self._env.state_transition( action, execute=True, robot_id=robot_id ) z = None elif isinstance(action, LookAction) or isinstance(action, FindAction): robot_pose = self._env.state.pose(robot_id) z = self._env.sensors[robot_id].observe(robot_pose, self._env.state) self._last_observation[robot_id] = z self._last_viz_observation[robot_id] = z reward = self._env.state_transition( action, execute=True, robot_id=robot_id ) print("robot state: %s" % str(self._env.state.object_states[robot_id])) print(" action: %s" % str(action.name)) print(" observation: %s" % str(z)) print(" reward: %s" % str(reward)) print("------------") return action
[docs] def on_loop(self): self._playtime += self._clock.tick(self._fps) / 1000.0
[docs] def on_render(self): # self._display_surf.blit(self._background, (0, 0)) self.render_env(self._display_surf) robot_id = list(self._env.robot_ids)[0] # Just pick the first one. rx, ry, rth = self._env.state.pose(robot_id) fps_text = "FPS: {0:.2f}".format(self._clock.get_fps()) last_action = self._last_action.get(robot_id, None) last_action_str = "no_action" if last_action is None else str(last_action) pygame.display.set_caption( "%s | Robot%d(%.2f,%.2f,%.2f) | %s | %s" % ( last_action_str, robot_id, rx, ry, rth * 180 / math.pi, str(self._env.state.object_states[robot_id]["objects_found"]), fps_text, ) ) pygame.display.flip()
[docs] def on_cleanup(self): pygame.quit()
[docs] def on_execute(self): if self.on_init() == False: self._running = False while self._running: for event in pygame.event.get(): self.on_event(event) self.on_loop() self.on_render() self.on_cleanup()
[docs] def render_env(self, display_surf): # draw robot, a circle and a vector img = np.copy(self._img) for i, robot_id in enumerate(self._env.robot_ids): rx, ry, rth = self._env.state.pose(robot_id) r = self._res # Not radius! last_observation = self._last_observation.get(robot_id, None) last_viz_observation = self._last_viz_observation.get(robot_id, None) last_belief = self._last_belief.get(robot_id, None) if last_belief is not None: MosViz.draw_belief(img, last_belief, r, r // 3, self._target_colors) if last_viz_observation is not None: MosViz.draw_observation( img, last_viz_observation, rx, ry, rth, r, r // 4, color=(200, 200, 12), ) if last_observation is not None: MosViz.draw_observation( img, last_observation, rx, ry, rth, r, r // 8, color=(20, 20, 180) ) MosViz.draw_robot( img, rx * r, ry * r, rth, r, color=(12, 255 * (0.8 * (i + 1)), 12) ) pygame.surfarray.blit_array(display_surf, img)
[docs] def unittest(): # If you don't want occlusion, use this: laserstr = make_laser_sensor(90, (1, 8), 0.5, False) # If you want occlusion, use this # (the difference is mainly in angle_increment; this # is due to the discretization - discretization may # cause "strange" behavior when checking occlusion # but the model is actually doing the right thing.) laserstr_occ = make_laser_sensor(360, (1, 8), 0.5, True) # Proximity sensor proxstr = make_proximity_sensor(1.5, False) proxstr_occ = make_proximity_sensor(1.5, True) worldmap, robot = world1 worldstr = equip_sensors(worldmap, {robot: laserstr}) dim, robots, objects, obstacles, sensors = interpret(worldstr) init_state = MosOOState({**objects, **robots}) env = MosEnvironment(dim, init_state, sensors, obstacles=obstacles) viz = MosViz(env, controllable=True) viz.on_execute()
if __name__ == "__main__": unittest()