Source code for problems.rocksample.rocksample_problem

"""RockSample(n,k) problem

Origin: Heuristic Search Value Iteration for POMDPs (UAI 2004)

Description:

State space:

    Position {(1,1),(1,2),...(n,n)}
    :math:`\\times` RockType_1 :math:`\\times` RockType_2, ..., :math:`\\times` RockType_k
    where RockType_i = {Good, Bad}
    :math:`\\times` TerminalState

    (basically, the positions of rocks are known to the robot,
     but not represented explicitly in the state space. Check_i
     will smartly check the rock i at its location.)

Action space:

    North, South, East, West, Sample, Check_1, ..., Check_k
    The first four moves the agent deterministically
    Sample: samples the rock at agent's current location
    Check_i: receives a noisy observation about RockType_i
    (noise determined by eta (:math:`\eta`). eta=1 -> perfect sensor; eta=0 -> uniform)

Observation: observes the property of rock i when taking Check_i.  The
     observation may be noisy, depending on an efficiency parameter which
     decreases exponentially as the distance increases between the rover and
     rock i. 'half_efficiency_dist' influences this parameter (larger, more robust)

Reward: +10 for Sample a good rock. -10 for Sampling a bad rock.
        Move to exit area +10. Other actions have no cost or reward.

Initial belief: every rock has equal probability of being Good or Bad.

"""

import pomdp_py
import random
import math
import numpy as np
import sys
import copy

EPSILON = 1e-9


[docs] def euclidean_dist(p1, p2): return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2)
[docs] class RockType: GOOD = "good" BAD = "bad"
[docs] @staticmethod def invert(rocktype): if rocktype == "good": return "bad" else: return "good"
# return 1 - rocktype
[docs] @staticmethod def random(p=0.5): if random.uniform(0, 1) >= p: return RockType.GOOD else: return RockType.BAD
[docs] class State(pomdp_py.State): def __init__(self, position, rocktypes, terminal=False): """ position (tuple): (x,y) position of the rover on the grid. rocktypes: tuple of size k. Each is either Good or Bad. terminal (bool): The robot is at the terminal state. (It is so true that the agent's state doesn't need to involve the map!) x axis is horizontal. y axis is vertical. """ self.position = position if type(rocktypes) != tuple: rocktypes = tuple(rocktypes) self.rocktypes = rocktypes self.terminal = terminal def __hash__(self): return hash((self.position, self.rocktypes, self.terminal)) def __eq__(self, other): if isinstance(other, State): return ( self.position == other.position and self.rocktypes == other.rocktypes and self.terminal == other.terminal ) else: return False def __str__(self): return self.__repr__() def __repr__(self): return "State(%s | %s | %s)" % ( str(self.position), str(self.rocktypes), str(self.terminal), )
[docs] class Action(pomdp_py.Action): def __init__(self, name): self.name = name def __hash__(self): return hash(self.name) def __eq__(self, other): if isinstance(other, Action): return self.name == other.name elif type(other) == str: return self.name == other def __str__(self): return self.name def __repr__(self): return "Action(%s)" % self.name
[docs] class MoveAction(Action): EAST = (1, 0) # x is horizontal; x+ is right. y is vertical; y+ is up. WEST = (-1, 0) NORTH = (0, -1) SOUTH = (0, 1) def __init__(self, motion, name): if motion not in { MoveAction.EAST, MoveAction.WEST, MoveAction.NORTH, MoveAction.SOUTH, }: raise ValueError("Invalid move motion %s" % motion) self.motion = motion super().__init__("move-%s" % str(name))
MoveEast = MoveAction(MoveAction.EAST, "EAST") MoveWest = MoveAction(MoveAction.WEST, "WEST") MoveNorth = MoveAction(MoveAction.NORTH, "NORTH") MoveSouth = MoveAction(MoveAction.SOUTH, "SOUTH")
[docs] class SampleAction(Action): def __init__(self): super().__init__("sample")
[docs] class CheckAction(Action): def __init__(self, rock_id): self.rock_id = rock_id super().__init__("check-%d" % self.rock_id)
[docs] class Observation(pomdp_py.Observation): def __init__(self, quality): self.quality = quality def __hash__(self): return hash(self.quality) def __eq__(self, other): if isinstance(other, Observation): return self.quality == other.quality elif type(other) == str: return self.quality == other def __str__(self): return str(self.quality) def __repr__(self): return "Observation(%s)" % str(self.quality)
[docs] class RSTransitionModel(pomdp_py.TransitionModel): """The model is deterministic""" def __init__(self, n, rock_locs, in_exit_area): """ rock_locs: a map from (x,y) location to rock_id in_exit_area: a function (x,y) -> Bool that returns True if (x,y) is in exit area """ self._n = n self._rock_locs = rock_locs self._in_exit_area = in_exit_area def _move_or_exit(self, position, action): expected = (position[0] + action.motion[0], position[1] + action.motion[1]) if self._in_exit_area(expected): return expected, True else: return ( max(0, min(position[0] + action.motion[0], self._n - 1)), max(0, min(position[1] + action.motion[1], self._n - 1)), ), False
[docs] def probability(self, next_state, state, action, normalized=False, **kwargs): if next_state != self.sample(state, action): return EPSILON else: return 1.0 - EPSILON
[docs] def sample(self, state, action): next_position = tuple(state.position) rocktypes = tuple(state.rocktypes) next_rocktypes = rocktypes next_terminal = state.terminal if state.terminal: next_terminal = True # already terminated. So no state transition happens else: if isinstance(action, MoveAction): next_position, exiting = self._move_or_exit(state.position, action) if exiting: next_terminal = True elif isinstance(action, SampleAction): if next_position in self._rock_locs: rock_id = self._rock_locs[next_position] _rocktypes = list(rocktypes) _rocktypes[rock_id] = RockType.BAD next_rocktypes = tuple(_rocktypes) return State(next_position, next_rocktypes, next_terminal)
[docs] def argmax(self, state, action): """Returns the most likely next state""" return self.sample(state, action)
[docs] class RSObservationModel(pomdp_py.ObservationModel): def __init__(self, rock_locs, half_efficiency_dist=20): self._half_efficiency_dist = half_efficiency_dist self._rocks = {rock_locs[pos]: pos for pos in rock_locs}
[docs] def probability(self, observation, next_state, action): if isinstance(action, CheckAction): # compute efficiency rock_pos = self._rocks[action.rock_id] dist = euclidean_dist(rock_pos, next_state.position) eta = (1 + pow(2, -dist / self._half_efficiency_dist)) * 0.5 # compute probability actual_rocktype = next_state.rocktypes[action.rock_id] if actual_rocktype == observation: return eta else: return 1.0 - eta else: if observation.quality is None: return 1.0 - EPSILON # expected to receive no observation else: return EPSILON
[docs] def sample(self, next_state, action, argmax=False): if not next_state.terminal and isinstance(action, CheckAction): # compute efficiency rock_pos = self._rocks[action.rock_id] dist = euclidean_dist(rock_pos, next_state.position) eta = (1 + pow(2, -dist / self._half_efficiency_dist)) * 0.5 if argmax: keep = eta > 0.5 else: keep = eta > random.uniform(0, 1) actual_rocktype = next_state.rocktypes[action.rock_id] if not keep: observed_rocktype = RockType.invert(actual_rocktype) return Observation(observed_rocktype) else: return Observation(actual_rocktype) else: # Terminated or not a check action. So no observation. return Observation(None) return self._probs[next_state][action][observation]
[docs] def argmax(self, next_state, action): """Returns the most likely observation""" return self.sample(next_state, action, argmax=True)
[docs] class RSRewardModel(pomdp_py.RewardModel): def __init__(self, rock_locs, in_exit_area): self._rock_locs = rock_locs self._in_exit_area = in_exit_area
[docs] def sample(self, state, action, next_state, normalized=False, **kwargs): # deterministic if state.terminal: return 0 # terminated. No reward if isinstance(action, SampleAction): # need to check the rocktype in `state` because it has turned bad in `next_state` if state.position in self._rock_locs: if state.rocktypes[self._rock_locs[state.position]] == RockType.GOOD: return 10 else: # No rock or bad rock return -10 else: return 0 # problem didn't specify penalty for sampling empty space. elif isinstance(action, MoveAction): if self._in_exit_area(next_state.position): return 10 return 0
[docs] def argmax(self, state, action, next_state, normalized=False, **kwargs): raise NotImplementedError
[docs] def probability( self, reward, state, action, next_state, normalized=False, **kwargs ): raise NotImplementedError
[docs] class RSPolicyModel(pomdp_py.RolloutPolicy): """Simple policy model according to problem description.""" def __init__(self, n, k): check_actions = set({CheckAction(rock_id) for rock_id in range(k)}) self._move_actions = {MoveEast, MoveWest, MoveNorth, MoveSouth} self._other_actions = {SampleAction()} | check_actions self._all_actions = self._move_actions | self._other_actions self._n = n
[docs] def sample(self, state, normalized=False, **kwargs): return random.sample(self.get_all_actions(state=state), 1)[0]
[docs] def probability(self, action, state, normalized=False, **kwargs): raise NotImplementedError
[docs] def argmax(self, state, normalized=False, **kwargs): """Returns the most likely reward""" raise NotImplementedError
[docs] def get_all_actions(self, **kwargs): state = kwargs.get("state", None) if state is None: return list(self._all_actions) else: motions = set(self._all_actions) rover_x, rover_y = state.position if rover_x == 0: motions.remove(MoveWest) if rover_y == 0: motions.remove(MoveNorth) if rover_y == self._n - 1: motions.remove(MoveSouth) return list(motions | self._other_actions)
[docs] def rollout(self, state, history=None): return random.sample(self.get_all_actions(state=state), 1)[0]
[docs] class RockSampleProblem(pomdp_py.POMDP):
[docs] @staticmethod def random_free_location(n, not_free_locs): """returns a random (x,y) location in nxn grid that is free.""" while True: loc = (random.randint(0, n - 1), random.randint(0, n - 1)) if loc not in not_free_locs: return loc
[docs] def in_exit_area(self, pos): return pos[0] == self._n
[docs] @staticmethod def generate_instance(n, k): """Returns init_state and rock locations for an instance of RockSample(n,k)""" rover_position = (0, random.randint(0, n - 1)) rock_locs = {} # map from rock location to rock id for i in range(k): loc = RockSampleProblem.random_free_location( n, set(rock_locs.keys()) | set({rover_position}) ) rock_locs[loc] = i # random rocktypes rocktypes = tuple(RockType.random() for i in range(k)) # Ground truth state init_state = State(rover_position, rocktypes, False) return init_state, rock_locs
[docs] def print_state(self): string = "\n______ID______\n" rover_position = self.env.state.position rocktypes = self.env.state.rocktypes # Rock id map for y in range(self._n): for x in range(self._n + 1): char = "." if x == self._n: char = ">" if (x, y) in self._rock_locs: char = str(self._rock_locs[(x, y)]) if (x, y) == rover_position: char = "R" string += char string += "\n" string += "_____G/B_____\n" # Good/bad map for y in range(self._n): for x in range(self._n + 1): char = "." if x == self._n: char = ">" if (x, y) in self._rock_locs: if rocktypes[self._rock_locs[(x, y)]] == RockType.GOOD: char = "$" else: char = "x" if (x, y) == rover_position: char = "R" string += char string += "\n" print(string)
def __init__( self, n, k, init_state, rock_locs, init_belief, half_efficiency_dist=20 ): self._n, self._k = n, k agent = pomdp_py.Agent( init_belief, RSPolicyModel(n, k), RSTransitionModel(n, rock_locs, self.in_exit_area), RSObservationModel(rock_locs, half_efficiency_dist=half_efficiency_dist), RSRewardModel(rock_locs, self.in_exit_area), ) env = pomdp_py.Environment( init_state, RSTransitionModel(n, rock_locs, self.in_exit_area), RSRewardModel(rock_locs, self.in_exit_area), ) self._rock_locs = rock_locs super().__init__(agent, env, name="RockSampleProblem")
[docs] def test_planner(rocksample, planner, nsteps=3, discount=0.95): gamma = 1.0 total_reward = 0 total_discounted_reward = 0 for i in range(nsteps): print("==== Step %d ====" % (i + 1)) action = planner.plan(rocksample.agent) # pomdp_py.visual.visualize_pouct_search_tree(rocksample.agent.tree, # max_depth=5, anonymize=False) true_state = copy.deepcopy(rocksample.env.state) env_reward = rocksample.env.state_transition(action, execute=True) true_next_state = copy.deepcopy(rocksample.env.state) real_observation = rocksample.env.provide_observation( rocksample.agent.observation_model, action ) rocksample.agent.update_history(action, real_observation) planner.update(rocksample.agent, action, real_observation) total_reward += env_reward total_discounted_reward += env_reward * gamma gamma *= discount print("True state: %s" % true_state) print("Action: %s" % str(action)) print("Observation: %s" % str(real_observation)) print("Reward: %s" % str(env_reward)) print("Reward (Cumulative): %s" % str(total_reward)) print("Reward (Cumulative Discounted): %s" % str(total_discounted_reward)) if isinstance(planner, pomdp_py.POUCT): print("__num_sims__: %d" % planner.last_num_sims) print("__plan_time__: %.5f" % planner.last_planning_time) if isinstance(planner, pomdp_py.PORollout): print("__best_reward__: %d" % planner.last_best_reward) print("World:") rocksample.print_state() if rocksample.in_exit_area(rocksample.env.state.position): break return total_reward, total_discounted_reward
[docs] def init_particles_belief(k, num_particles, init_state, belief="uniform"): num_particles = 200 particles = [] for _ in range(num_particles): if belief == "uniform": rocktypes = [] for i in range(k): rocktypes.append(RockType.random()) rocktypes = tuple(rocktypes) elif belief == "groundtruth": rocktypes = copy.deepcopy(init_state.rocktypes) particles.append(State(init_state.position, rocktypes, False)) init_belief = pomdp_py.Particles(particles) return init_belief
[docs] def minimal_instance(**kwargs): # A particular instance for debugging purpose n, k = 2, 2 rover_position = (0, 0) rock_locs = {} # map from rock location to rock id rock_locs[(0, 1)] = 0 rock_locs[(1, 1)] = 1 rocktypes = ("good", "good") # Ground truth state init_state = State(rover_position, rocktypes, False) belief = "uniform" init_belief = init_particles_belief(k, 200, init_state, belief=belief) rocksample = RockSampleProblem(n, k, init_state, rock_locs, init_belief, **kwargs) return rocksample
[docs] def create_instance(n, k, **kwargs): init_state, rock_locs = RockSampleProblem.generate_instance(n, k) belief = "uniform" # init belief (uniform), represented in particles; # We don't factor the state here; We are also not doing any action prior. init_belief = init_particles_belief(k, 200, init_state, belief=belief) rocksample = RockSampleProblem(n, k, init_state, rock_locs, init_belief, **kwargs) return rocksample
[docs] def main(): rocksample = debug_instance() # create_instance(7, 8) rocksample.print_state() print("*** Testing POMCP ***") pomcp = pomdp_py.POMCP( max_depth=30, discount_factor=0.95, num_sims=10000, exploration_const=5, rollout_policy=rocksample.agent.policy_model, num_visits_init=1, ) tt, ttd = test_planner(rocksample, pomcp, nsteps=100, discount=0.95)
if __name__ == "__main__": main()