Source code for pomdp_py.problems.light_dark.env.env

"""Defines the Environment for the light dark domain.

Origin: Belief space planning assuming maximum likelihood observations
"""

import pomdp_py
import pomdp_py.problems.light_dark as ld
import numpy as np


[docs] class LightDarkEnvironment(pomdp_py.Environment): def __init__(self, init_state, light, const, reward_model=None): """ Args: init_state (light_dark.domain.State or np.ndarray): initial true state of the light-dark domain, goal_pos (tuple): goal position (x,y) light (float): see below const (float): see below reward_model (pomdp_py.RewardModel): A reward model used to evaluate a policy `light` and `const` are parameters in :math:`w(x) = \frac{1}{2}(\text{light}-s_x)^2 + \text{const}` Basically, there is "light" at the x location at `light`, and the farther you are from it, the darker it is. """ self._light = light self._const = const transition_model = ld.TransitionModel() if type(init_state) == np.ndarray: init_state = ld.State(init_state) super().__init__(init_state, transition_model, reward_model) @property def light(self): return self._light @property def const(self): return self._const